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Thermal diffusivity and the conformal transformation on nematic liquid crystals
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In this paper, we will study theoretically and experimentally the anisotropy of the thermal diffusivity in
nematic liquid crystals. We will show that the Baalss-Hess conformal transformation [D. Baalss and S. Hess,
Phys. Rev. Lett. 57, 86 (1986)], can be used to obtain a free of adjustable parameters equation that describes
the anisotropy of the heat diffusion in these materials. The results of this theory will be compared with

experimental data. This study will partially confirm the widely known experimental evidences that indicate that
the thermal diffusivity is larger in the director direction than in the one perpendicular to it. For calamitic
nematic phases this is true; for discotic nematic ones the reverse situation would be found; the diffusivity
would become larger in the direction perpendicular to the director. We will also present experimental data
supporting this theoretical prediction.The data comprehend the calamitic and discotic nematic lyotropic phases

and a nematic thermotropic phase.
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I. INTRODUCTION

The anisotropy observed in the thermodynamical proper-
ties of the liquid crystals (LC) are among the most unex-
pected phenomena of the nature; liquid crystals are liquids
that present anisotropic behavior. Their anisotropies cover a
broad range of properties such as viscosity, elasticity, bire-
fringence, electric permittivity, magnetic susceptibility, ther-
mal diffusion, etc. As each of these properties is function of
the degree of alignment of the anisotropic grains that consti-
tute the nematic liquid crystals (NLC) (molecules for ther-
motropics and micelles for lyotropics) [1], a straightforward
idea to understand the origin of the nematic anisotropies is to
attribute to the microscopic anisotropy of their grains the
source of the anisotropies observed on macroscopic scale [2].
Accordingly, Hess and Baalss (HB) [2-6] assumed that if
one could imagine a way by which the molecules of these
liquids could be continuously deformed, up to the point in
which they become spherical, it would be possible to observe
a corresponding reduction of the macroscopic anisotropies,
until its vanishing. Inversely, if the idealized spherical mol-
ecules of an isotropic liquid could be deformed until they
assume the ellipsoidal form of an idealized nematic mol-
ecule, the macroscopic physical properties would be trans-
formed on those observed on the NLC. Essentially, these are
the fundamentals of the ideas of the (HB) conformal trans-
formation hypotheses, originally applied to the study of the
viscosity of the NLC [2] but, later, also applied to the study
of diffusion [7] and elasticity [8], all with excellent results.

In their work, HB assumed that the molecular deforma-
tions supposed by their reasoning could not be effectively
done on the laboratory; these deformations were conjectured
to justify the use of a mathematical transformation in which
the physics of an anisotropic fluid could be written in terms
of the physics of an isotropic one. Nevertheless, as it will be
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shown here, it is possible to do what HB assumed as a con-
jecture. In order to make our study we have looked for a
phenomenon for which the HB approach gives new and un-
questionable results; the thermal diffusivity. For as long as
we know, there is not yet a theory of thermal diffusivity for
the nematic phase. Even being expected that nematic mate-
rials would present anisotropic heat propagation, a detailed
quantitative explanation for this fact is yet missing. Never-
theless, without exception, every experimental data agree
that the thermal diffusivity along the direction parallel to the
director is greater than the one in the direction perpendicular
to it [9-18]. As we will see ahead, the HB approach gives a
very precise explanation to it and, furthermore, predicts the
conditions in which this rule would be broken: calamitic
nematic lyotropic phase being replaced by discotic nematic
ones. This prediction is a consequence of the fact that the
ratio between the thermal diffusivity along the two main mo-
lecular directions is proportional to the eccentricity of the
nematic phase [see Eq. (13)]. Consequently, a change in the
micellar shape would be immediately detected in the thermal
diffusivity, which is exactly the HB conjecture. The aim of
this work is to furnish the theoretical fundamentals of this
model, present an experimental example in which the HB
conjecture can be explicitly observed, and, furthermore, ex-
amine a situation in which is presented an experimental mea-
surement in which the thermal diffusivity along the direction
perpendicular to the director is greater than the one along the
direction parallel to it.

II. FUNDAMENTALS

In order to propose an expression to the heat conduction
in an isotropic medium we start from the known equation

d
—T-KV3T=g, 1
o q (1)

where T is the temperature, 7 is the time, ¢ is the heat flux at
the point (7,1), and K is the thermal conductivity and consid-
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ers the Laplacian operator in a generalized cordinate system
[19]. Moreover, we consider the director of a nematic phase
uniformly oriented. In this way, the scale factor h;, i
=1,2,3, become constant that can be absorbed in K, defining
a different K for each direction, K — K/ h?:Ki. In this con-
text, he above equation can be expressed as

d T-K & T (2)

a Dl Tt
Furthermore, as a rule, we will use Greek symbols to indi-
cate particles indexes, and latin indexes to indicate its Carte-
sian components. In order to obtain an expression for the
anisotropic nematic thermal conductivity K;, we recall the
standard expression for the coefficient of thermal conductiv-
ity along the direction ¢;, given as a time correlation function
[20,21],

1 s .
K;= Wf di(E'(0)E(1)), (3)

0

where E,(t)==)_ W is the transversal current, V is the
volume of the sample, kj is the Boltzmann constant, p is the
i Cartesian component of the momentum of the particle «,

and W* is given by

a_ ﬂ o l Zaf ~aB | praf
we=| = —(E?) |+ = 2 [UGP) + 7P F°P], (4)
m 2 BFa

where 7*# is the vector giving the distance between the par-

ticles @ and B, F*# is the force between the particles a and
B, N is total number of particles in the sample, and () is the
statistical average of the random variable Y.

Our procedure to obtain K; will be to apply on it the Hess
conformal transformation, as defined in Ref. [8], and write it
in terms of the diffusivity of an hypothetic isotropic fluid. As
was done by Hess, it is assumed that the interacting potential
U(7*P) is invariant by a conformal transformation that
changes a sphere to an ellipsoid having the shape of the
nematic micelles (or molecules). As consequence, it follows
that the vector components x' and s', used to describe, re-
spectively, elliptical and the spherical symmetric potentials,
would transform according to the rule

3 . 3 .
. dx' . d ds’ d
dii=> —ds/, —=> ——, (5)
= ds’ dx' 5 dx'ds’
which are constrained by the rule E?n:l %%: 5; According

to these relations if E; and S; are the transversal currents for
the liquids having ellipsoidal and spherical micelles, respec-
tively, we would have,

3 . 3
. dx' .
E=X"g, E=3 s, ()
X

=1 ds’

which are the rules for contravariant and covariant vectors,
respectively. Therefore, in terms of a liquid with spherical
symmetric micelles, Eq. (3) becomes
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1 - dx'dst\ ;
K= oS S EE?Lm“@Mm’(”

where we have assumed that the connected part in the equa-
tion leading Eq. (3) to Eq. (7) can be disregarded. In Ref. [8]
it has been shown that the conformal transformations can be
written as
i §i
E:alc‘)‘ij+b1nin-, E:a2@j+b2ninj, (8)

where 7 is the director at the point X and

1 3—-e(1-29)
ay=—, ay=*\|————>=, b=*1-aqa,
a, 3—6(]+ZS)

b2=t1—a2 (9)

S is the scalar order parameter and e=1 —(f—l)2 is the micellar
eccentricity, where b and a are the respectives micellar di-
mensions along the directions perpendicular and parallel to
the director. Using these relations it is obtained,

Ki = )
TVkgT

{(S/(0)S(1)) + bybynnL7i - SOV L7 - S() D},
(10)

where it has been used that ([ﬁ-§(O)]Si(t))=(Si(O)[ﬁ-g(t)]>
=0. So, for k; perpendicular to 7 (k) and, for K; parallel to
n (K;) it is obtained that

K =K, K=(1+bbyki. (11)

Consequently, the anisotropy A of the thermal conductivity,
defined as A=K,/K | -1, is given by

A= 3Se
CVBtelS-D][3-e2S+1)]

(12)

which is completely determined by the parameters S and e.
In addition, the parallel (perpendicular) thermal diffusivity
ky(k,) is related with the parallel (perpendicular) thermal
conductivity K\(K ) by kj(k)=K (K ,)/pCp, where p is the
density and Cp is the specific heat of the nematic sample. In
this way, the ratio k/k, is given by

ﬂ_ N 3Se
ki \[BreS-DIB-e2S+1)]

(13)

III. RESULTS AND DISCUSSION

The aim of this section is to give experimental support to
the above expression for the anisotropy on the thermal dif-
fusivity and, in consequence, afford consistence to the theory
leading to it. An important aspect of the above result is that it
does not depend on any adjustable parameter; Eq. (13) is
entirely determined by S and e, which can be eventually
measured in a nematic phase. So, an experimental verifica-
tion of this equation would afford a strong support to our
approach to the nematic thermal diffusivity and, in particular,
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to the generality of the applicability of the Hess conformal
transformation. In order to investigate the validity of the
above equation we notice that, according to it, the product of
the variables S and e in its numerator determines the sign of
the anisotropy on the heat diffusion. It would be null at the
isotropic phase, S=0 (which is not an unexpected result, be-
cause, if something different happens, we have to say that
such a formula is undoubtedly wrong). But, that numerator is
also proportional to e and this proportionality could be easily
tested. As we have said at the beginning of this paper, there
are lyotropic compounds for which the molecular shape can
be changed and, according to this formula, such a change of
shape would be detected in the thermal diffusivity. This is
one of the purposes of this section, to show that it is possible
to detect the molecular change of shape through thermal dif-
fusivity data and, consequently, to test the validity of the
Hess argument. According to Eq. (13), for ¢>0 (calamitic
nematic phase) the anisotropy A in the thermal conductivity
would be positive and «;/k; —1>0. Nevertheless, for e <0
(discotic nematic phase) it would be negative and in this way
is expected the ratio k;/k; —1<<0. From an experimental
point of view, this ratio was recently determined [22] in a
discotic nematic phase at room temperature (7=25 °C),
through the use of the Z-scan technique [23], in a lyotropic
mixture of potassium laurate, decanol, and D,O. In this pa-
per, using the same Z-scan technique, we report on news
measurements of the thermal diffusivity («) in a calamitic
nematic phase [17] at room temperature (T=25 °C) for a
particular concentration in weight percentage of potassium
laurate (KL:27.07), decanol (DeOH:6.17) and (D,0:66.76)
[24]. The phase sequence is the following: reentrant isotropic
(12.5 °C) calamitic nematic (54.5 °C) isotropic. In this study,
the two thermal diffusivities k; and k, have been obtained in
an experimental configuration as a laser beam travels in the
nematic medium with polarization parallel or perpendicular,
respectively, to the director of the nematic sample. The de-
tails of the experimental Z-scan technique setup utilized in
this work are described in Refs. [22,23]. In the Z-scan ex-
perimental technique a Gaussian laser beam (TEM) is fo-
cused to a narrow waist by a lens along the propagation
direction of the beam defined as being the z axis. The sample
is moved through the focal plane along the z direction and
the far-field transmittance of an iris centered along the beam
propagation direction is measured as a function of the posi-
tion z of the sample. As the sample moves along the beam
focus, further focusing or defocusing modifies the wave front
phase, thereby modifying the detected intensity. A sketch of
the Z-scan setup is shown in Fig. 1. Our experimental setup
includes a diode laser Ventus MPC600 (from Quantum) with
power output adjusted to 47 mW. The beam waist radius w,
is about 21.5 um and a mechanical chopper (Standford
SR540) provides laser pulses (33 ms) incident on the sample.
Data acquisition with temporal resolution is made by an os-
cilloscope model TDS3012 (from Tektronix) and a GPIB
board.

The values of the thermal diffusivity for a thermal non-
linear optical response can be determined from fitting the
spatial dependence on z and the temporal dependence via
thermal lens model [25] as described by Palffy-Muhoray er
al. [26] The normalized light transmittance (I'), as a function
of z and time 7, can be written as [26]
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Oscilloscope

FIG. 1. Sketch of the Z-scan apparatus. L, L,, and L; are lenses.
Chopper (Ch); sample (S); iris (I), and detector (D).

Computer

0 2x |
In=|1 . (14
(=9 { +<1+(l+x2)tw/2t>l+x2} (14)

where x=z/z,, 7z, is the confocal parameter, 6=2.303
(=dn/dT)aP/\K is the phase shift [27] (phase difference
between the center and the outer edge of the beam), 7,
=w§/ 4k is the characteristic thermal time, k=K/pCp is the
thermal diffusivity, P is the power of the laser beam, \ is the
wavelength of the laser, « is the linear optical absorption,
dn/dT is the thermo-optical coefficient, K is the thermal con-
ductivity, p is the density, and Cp is the specific heat. Equa-
tion (14) is valid under the condition <1 [26]. In liquid
crystal medium, 6, 7., and k are anisotropic parameters.
These parameters, 6,(6 ), .. (., ), and ky(k ) are defined in
a direction parallel (perpendicular) to the director of the
nematic sample. The nematic sample was conditioned in
sealed planar glass cells (1 mm of light path) from Hellma.
Uniform orientation of the sample was performed using an
electromagnet (H=10 kG) for 24 h and checked by crossed
polarizers. The laboratory frame axes are defined with the
boundary surfaces parallel to the x—y plane and z is the axis
normal to the biggest surface of the sample cell. The x—y
plane of the sample is defined with the x (y) axis parallel to
the length (width) of the cells. The planar alignment of the
sample is produced by a magnetic field of 10 kG parallel to
the x axis of the laboratory frame. A small quantity of fer-
rofluid (<0.04 wt) was added to the calamitic nematic
sample in order to ensure a good quality alignment of the
director in the N, phase. It is important to mention that in

a) b)

T

Z

FIG. 2. Experimental configuration of the nematic director,
magnetic field, and the laser beam polarization for thermal diffusiv-
ity measurements of (a) kj and (b) k, on the N phase.

041709-3



SIMOES et al.

1.3 T T T T T

1.2

1.1

0.9

0.8

1.00+

0.95

= 0.904

0.85

0.80 T T T T T T T
0 5 10 15 20 25 30 35

t(ms)

PHYSICAL REVIEW E 77, 041709 (2008)

-10 5 0 5 10
z(mm)
1.001 i
0.95 i
l—Z
0.90 i
0.85 1 S

t(ms)

FIG. 3. Typical curves of Z-scan measurements on the lyotropic mixture on the N phase, where (a) and (b) concern the configuration

nIIE and (c) and (d) concern the conﬁguratlon 7 LE. The solid lines (a) and (c) correspond to the fitting of Eq. (14) with 7~

10z leo for 0”

=2.261 X107 and 0, =1.798 X 1073, respectively [26]. Typical time dependence transmittance (b) and (d) at fixed (z=2.5 mm) position [27]
and 6,(0,) phase shift. The solid lines correspond to the fitting of Eq. (14) with 6,(0,)=2.261(1.798) X 1073 for .o (ts 1)

=2.42(2.86) ms [26].

this case, the geometry of the planar glass cells favors the
orientation of the director of this calamitic nematic phase
parallel to the x axis also by surface effects. The measure-
ments were made at 7=25 °C in a controlled temperature
device stable at 10 mK. The anisotropic parameters 6, t,,,
and k can be obtained by orientation of the director 71 along
two perpendicular directions, so the configurations between

n and the laser beam polarization E are 7llE and n L E, re-
spectively. Figure 2 shows a scheme of the relative configu-
ration of the nematic director, magnetic field, and polariza-
tion of incident laser beam for measurements of these
parameters in the N, phase. Figures 3(a) and 3(c) present
typical Z-scan curves obtained for the calamitic nematic
phase at temperature 7=25.0 °C. The experimental data are
determined according to Eq. (14) by means of a self-
consistent fitting of 6 and ¢., parameters. The fitting proce-
dure employed here is the same utilized by Palffy-Muhoray
et al. [26]. Figure 3(b) shows a typical time dependence
transmittance at a fixed z position and the fit from Eq. (14).
The experimental curves exhibited in Figs. 3(a) and 3(b) cor-
respond to the N, phase, for a laser beam traveling in the

nematic medium with polarization parallel to the optic axis
of the nematic sample. In the same way, similar curves were
obtained in a perpendicular direction to the optic axis of the
nematic phase [Figs. 3(c) and 3(d)]. Taking the experimental
values w,=21.5 um and 7,,=w>/4k, with 7,,(t,,,) aniso-
tropic parameters, into account, we obtain the parallel (k)
and perpendicular (k) thermal diffusivities defined, respec-
tively, in a direction parallel or perpendicular to the director
of the nematic sample, and the ratio «;/ k. These important
parameters are given in Table I.

From theoretical point of view, the ratio kj/k, can be
determined via Eq. (13). Taking the ratio between the micel-
lar and the molecular dimensions [9,17], eccentricity and or-
der parameter (S=0.5 for lyotropic nematic phases [28] and
§=0.59 for a thermotropic nematic phase [9]) into account,
we obtain from Eq. (13) the ratio k/k, as indicated in Table
I. As we see in Table I, we have obtained a good accordance
of the results predicted by our model concerning nematic
phase studied in this work. Essentially, we have shown that
the conformal transformation approach can be used to pro-
duce an adjustable parameters expression for the anisotropic
part of the thermal diffusivity in NLC. The expression that
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TABLE I. Values of the ratio of the micellar (molecular) dimen-
sions, micellar (molecular) eccentricity, and ratio of the thermal
diffusivities in the nematic lyotropic (thermotropic) phases at T
=25 °C.

Nematic phase b/a e  kj/k, (measured) kj/k, (estimated)

N¢ 0.59 0.65 1.18 1.46
Np 1.39 -0.94 0.93 0.66
N (5CB) 0.36 0.87 1.73 1.90

we have found depends solely on the order parameter S and
the eccentricity e of the nematic micelle or molecule and has
predicted that the known experimental result (the thermal
diffusivity is larger in the director direction than in the direc-
tion perpendicular to it) is only true for nematic phases (e
>0). If a discotic nematic phase (¢ <0) was used the reverse
result would be observed.

Some years ago Hess and co-workers studied the problem
of (self-)diffusion in a liquid crystal and found a relation that
resembles our Eq. (15). If Dy and D, are, respectively, the
diffusion coefficients in the direction parallel and perpen-
dicular to the director direction, in terms of our notation it
can be shown that the equation obtained by those authors
have the form Dy/D,=3Se/[3—e(S+2)]. The similarities
found on the form of this equation and Eq. (13) above, re-
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veals that these equations are closely related and would de-
scribe similar phenomena. Furthermore, to be in consonance
with the experimental findings of our paper, we would like to
notice that this equation also predicts a change in the direc-
tion of the diffusion as the geometry of the micelle changes
from calamitic to discotic, i.e., the diffusion anisotropy
changes sign with the eccentricity e.

To sum up, experimental data and theoretical studies of
thermal diffusivity in NLC have been gathered to produce a
new understanding of the thermal diffusivity in these mate-
rials and, furthermore, to illustrate the potentialities of use of
the Baalss-Hess conformal transformation approach in the
study of anisotropic phenomena in NLC. This work presents
the results of such measurements, which comprehend the ca-
lamitic and discotic nematic lyotropic phases and a nematic
thermotropic phase, and they confirm the theoretical predic-
tion. If we consider the difficulties involved in the simulta-
neous determination of S and e, it must be concluded that the
agreement is good.
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